STUDY MODULE DESCRIPTION FORM				
Name of the module/subject Mathematics II				
Field of study Control Engineering and Robotics			Profile of study (general academic, practical) (brak)	Year Semester
Elective path/specialty			Subject offered in: polish	Course (compulsory, elective) obligatory
Cycle of study:			Form of study (full-time, part-time) full-time	
No. of hours		2 Laboratory:	Project/seminars:	${ }^{\text {No. of creaits }} 6$
Status of the course in the study program (Basic, major, other) (brak)			(university-wide, from another field) (brak)	
Education areas and fields of science and art technical sciences				ECTS distribution (number and \%) 6100%
Responsible for subject / lecturer: dr Jacek Gruszka email: jacek.gruszka@put.poznan.pl tel. 616652320 Wydział Elektryczny ul. Piotrowo 3A 60-965 Poznań				
Prerequisites in terms of knowledge, skills and social competencies:				
1	Knowledge	Mathematical knowledge fiof	the secondary school	
2	Skills	Ability to solve problems a	mathematical modeling at the leve	fecondary school
3	Social competencies	Awareness of the need to	den their competence, willingnes	work together as a team
Assumptions and objectives of the course: 1. Learning algebraic structures and m etod classical and linear algebra. 2. Learning the methods and applications of analytic geometry.				
Study outcomes and reference to the educational results for a field of study				
Knowledge:				
1. has knowledge of complex numbers, operations with complex numbers, complex numbers form and their applications [K_W01] 2. has knowledge of the roots of polynomials, also in the set of complex numbers - [K_W01] 3. account has knowledge of the matrix, operations on matrices, determinants of matrices, inverse matrix calculation, the use of matrix to solve systems of linear equations - [K_W01] 4. have knowledge of basic algebraic structures - monoidów, groups, rings and fields - [K_W01] 5. has knowledge of n -dimensional vector space, database space, database changes, eigenvalues of matrix - [K_W01] 6. has knowledge of the operations on vectors in three-dimensional space, the basic geometric creations - a line, planes, quadrics - [K W01]				
Skills:				
1. Can operate on complex numbers, contain certain types of complex roots of polynomials - [K_U05] 2. It can perform operations with matrices, inverse matrix method set of elementary operations, calculate the determinant of a matrix, solve the system of linear equations using Gaussian method of elimination - [K_U05]				
3. able to recognize the structure of algebraic structures can be used monoidu and groups to describe of semi-automatic and automatic, - [K_U05] 4. It can determine the dimension of space and linear subspace, is able to do to change the database space, can solve the				
4. It can determine the dimension of space and linear subspace, is able to do to change the database space, can solve the matrix eigenvalue problem. - [K_U05] 5. It can perform operations on vectors in three-dimensional space and apply the methods of vector calculus to describe lines and planes. It can classify surfaces of the second degree (quadrics). - [K_U05]				

Social competencies:

1. He can think and act strictly in the area of process description in technical sciences - [K_K04]

